

UNIVERSITÀ DI TRENTO Dipartimento di Ingegneria Industriale

Motion Primitive Tree Planner MPTree

Mattia Piazza, Mattia Piccinini, Prof. Francesco Biral, and Prof. Mauro Da Lio

Department of Industrial Engineering, University of Trento, Italy

MOTIVATION

Trajectory planning for autonomous vehicles with dynamic obstacle avoidance

Model Predictive Control (MPC) have a high computational time and find sub-optimal solutions

Sampling-based exploration methods (**RRT***) generally not suitable for real time

PLANNING FRAMEWORK

Sampling-based exploration in a structured grid to expand a tree of optimal motion primitives

Refine the solution with an **MPC** problem in the computed **collision-free corridor**

Major iteration (20ms -50ms)	
 Sub-iterations	Motion primitives

METHOD

URBAN

- Trajectory planning with dynamic pedestrians and moving vehicles
- **Cooperative** maneuvre exchange
- Combining multiple planning goals: minimum jerk, minimum time, reference speed error
- Motion primitives to connect pairs of waypoints:
 - 1. Path: G2 clothoids (curvature continuity ensured)
 - 2. Velocity primitive: semi-analytical optimal control problem

Minimum-time on-line motion planning with dynamic opponents

RACING

- Explore a **structured grid** of waylines and waypoints
- **Space-temporal** prediction of the obstacle motion
- Motion primitives to connect pairs of waypoints:
 - 1. **Path**: Polynomial Neural Network (**NN-Poly**), approximating the minimum-time nonlinear MPC solutions
 - 2. **Velocity** trajectory: semi-analytical min-time optimal control problem with acceleration constraints

RESULTS

URBAN

Road intersection with manoeuvres exchange (cooperative) [MATLAB prototype]

IPG CarMaker integration with **C++** interface

Sampled waypoints WP of selected trajectory Bias of desired manoeuvre 8 6 4 2 0 -2 4 -6 -8 Inhibition of obstacle executed manoeuvre

RACING

- **Real-time** motion planning, horizon length approx. 100 m
- MPTree outperforms a benchmark obstacle avoidance MPC
- NN-Poly outperforms a benchmark generic NN, and it _____
 guarantees the path curvature continuity

NN accuracy

	Mean cpu time		(test set)
MPTree	33 ms	NN-Poly	0.0059 m
Benchmark MPC	> 200 ms	Benchmark NN	0.0506 m

FUTURE DEVELOPMENTS

- Vehicle In the Loop testing in collaboration with automotive partner
- Explore by **informed sampling** around previous best solution
- Train a NN or RL to sample node not randomly
- Compare **MPTree** with **Codriver** (bio inspired planners)
- Use **MPTree** in cascade with **ARD** framework

REFERENCES

- (1) S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning", in The international journal of robotics research, 30(7), pp.846-894, 2011.
- (2) M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli, "Semi-analytical minimum time solutions for a vehicle following clothoid-based trajectory subject to velocity constraints", In 2016 European Control Conference (ECC) (pp. 2221-2227). IEEE.

(3) M. Piccinini, S. Taddei, M. Larcher, M. Piazza and F. Biral, "A Physics-Driven Artificial Agent for Online Time-Optimal Vehicle Motion Planning and Control", in IEEE Access, vol. 11, pp. 46344-46372, 2023.
(4) M. Da Lio, R. Dona, G.P.R. Papini, and K. Gurney, "Agent Architecture for Adaptive Behaviours in Autonomous Driving", in IEEE ACCESS, 2020, pp.1-18.