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MOTIVATION
Trajectory planning for autonomous vehicles with dynamic obstacle avoidance  

Model Predictive Control (MPC) have a high computational time and find sub-optimal solutions 

Sampling-based exploration methods (RRT*) generally not suitable for real time 
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Sampling-based exploration in a structured grid to expand a tree of optimal motion primitives 

Refine the solution with an MPC problem in the computed collision-free corridor

• Minimum-time on-line motion planning with dynamic opponents 

• Explore a structured grid of waylines and waypoints 
• Space-temporal prediction of the obstacle motion 
• Motion primitives to connect pairs of waypoints: 

1. Path: Polynomial Neural Network (NN-Poly), approximating the 
minimum-time nonlinear MPC solutions 

2. Velocity trajectory: semi-analytical min-time optimal control problem 
with acceleration constraints

• Trajectory planning with dynamic pedestrians and moving vehicles 

• Cooperative maneuvre exchange 

• Combining multiple planning goals: minimum jerk, minimum time, 
reference speed error 

• Motion primitives to connect pairs of waypoints: 

1. Path: G2 clothoids (curvature continuity ensured) 
2. Velocity primitive: semi-analytical optimal control problem

• Real-time motion planning, horizon length approx. 100 m 

• MPTree outperforms a benchmark obstacle avoidance MPC 

• NN-Poly outperforms a benchmark generic NN, and it 
guarantees the path curvature continuity

Mean cpu time

MPTree 33 ms

Benchmark MPC > 200 ms

NN accuracy  
(test set)

NN-Poly 0.0059 m

Benchmark NN 0.0506 m
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URBAN

Road intersection with manoeuvres exchange (cooperative) [MATLAB prototype]
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FUTURE DEVELOPMENTS REFERENCES

IPG CarMaker integration with C++ interface

METHOD

• Vehicle In the Loop testing in collaboration with automotive partner 

• Explore by informed sampling around previous best solution 

• Train a NN or RL to sample node not randomly 

• Compare MPTree with Codriver (bio inspired planners) 

• Use MPTree in cascade with ARD framework
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